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Nonclassical properties of teleported optical fields in quantum teleportation of continuous variables
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When sending a quantum state which originally has nonclassical properties such as various kinds of squeez-
ing and photon antibunching effects according to the protocol for teleportation of continuous vaigahles
Braunstein and H. J. Kimble, Phys. Rev. L&, 869(1998], we investigate to what extent those nonclassical
properties can be preserved in the teleported field. Explicit conditions of the squeezing parameter for the
second- and fourth-order quadrature-phase squeezings, the squared amplitude squeezing, and the photon anti-
bunching effect to survive in the teleported field are obtained.
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In the rapidly developing field of quantum communica- properties of a quantum state via the teleportation process
tion, one of the crucial problems is how to send an unknowreven if the transportation of a whole quantum state is not
quantum state from one place to another one. This transmigerfect? Perhaps transferring partial information about a
sion has two essential points. First, only a quantum statguantum state is not the original idea of teleportation of an
itself is transported and a carrier of the quantum state is kepthknown quantum state. However, we think that it may pro-
at the original location. Second, no information about avide us with a more effective and secure approach for send-
quantum state to be sent is given to the sender prior to thd guantum mformauon than traditional methods. In Ref.
transmission. Thus, in this transmission, it would seem thak15). transfer of nonclassical features of a quantum state such
an unknown quantum state disappears at one place and la@$ sub—_P0|sson|an statistics of photons and the sec_ond—order
emerges at another one. So, this process is termed teleporfu€€zing of quadrature-phase components according to the
tion of an unknown quantum state. Braunstein and K|r_nbl_e teleportation protocol, in W_hlch the

Bennetet al. [1] first proposed a scheme for teleporting duantum channel is influenced by a thermal environment,
an unknown quantum state in a finite-dimensional HilbertVas investigated by use of the quasiprobability function. It
space via a classical information channel and a quanturas found that the mixed two-mode squeezed vacuum state
channel which is based on quantum nonlocal correlation befor the quantum channel may become separable in the evo-
tween the sender and the receiver who share the Einsteifidtion of time and then any nonclassical features of an un-
Podolsky-Rose(EPR state [2]. Since this proposal was kr!own state cannot be preserved in the teleporteq state. _In
raised, a lot of effort towards accomplishing the protocol hadhis paper, using a general expression for the density matrix
been madé3—-5]. On the other hand, Vaidmds] proposed of t.he teleported field, we study higher-order squeezing prop-
a scheme for teleporting continuous variables. In tha€rties of the teleported field, such as the fourth-order squeez-
scheme, the perfect correlation between position and mdnd of quadrature-phase components and the squeezing of
mentum of two particles in the EPR state is used as a quar$_quared amplitudes. Expllc_lt conditions of the squeezing pa-
tum channel. It is noticed that two quadrature-phase Compd_ameter.for these npnclassmal features to survive in the tele-
nents of a single-mode optical field are analogous to positioRorted field are derived. o
and momentum of a particle. Braunstein and Kimbiepro- Suppose that two modes and B of an optical field are
posed a quantum optical version of teleportation of continuPrepared in a squeezed vacuum state
ous variables. Furusawat al. [8] experimentally demon-
strated the scheme for a coherent state of a single-mode |S)as=cosh 'r exp(—cothra’b")[0), (1)
optical field. The experimental success has inspired much
interest in the study of quantum teleportation of continuousvherea’ (a) andb® (b) are bosonic creatiofannihilation
variables[9-19]. operators for modeA andB, respectively. Whem#0, two

In the protocol for quantum teleportation of continuousquadrature-phase components of the modes are entangled.
variables 7], quantum correlation between quadrature-phasé&ow let modeA be sent to the sendéAlice) and simulta-
components of an optical field in a two-mode highly neously modd to the receivetBob). In this way, a quantum
squeezed state is employed as a quantum channel. Since itfgannel between Alice and Bob is built. Let us suppose that
squeezing degree is finite and then the quantum channel ibere is also a classical channel between them, via which
imperfect, the fidelity of the teleportation process must bethey may communicate information in a usual way. Now we
less than 1. In fact, the requirement for a complete overlafnand over an arbitrary quantum stagg) to Alice but we do
between an input state and the corresponding output one i®t give her any information about this state. However, we
too strict to be fulfilled because it is equivalent to requiringask Alice to send this state to Bob. According to the telepor-
that the mean photon number in the squeezed vacuum statation schemd7], the task can be fulfilled by two steps.
be infinite[11]. Considering this point, we now ask a ques- First, Alice performs a local Bell-state measurement on the
tion: is it possible to transmit and preserve some interestingubsystem which consists of the entangled madeand the

1050-2947/2002/6@)/0243024)/$20.00 66 024302-1 ©2002 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW 46, 024302 (2002

input mode. The Bell-state measurement is composed of atopy of the input state. The above teleportation scheme was
ideal 50/50 beam splitter and two homodyne measuremenmtriginally described by use of the Wigner functipfi. In the
detectors for measuring eigenvalues of two commutativeéecent publication[18], Janszky et al. reformulated the
guadrature-phase operators for the optical fields at two ouscheme in the coherent state representation and yielded a
put ports of the beam splitter. After the Bell-state measuresimple direct description of the teleportation process. In the
ment, the modé\ and the input mode are entangled togethemepresentation of coherent states, an input diage can be

and both are projected into one of the eigenstates but theritten as

modeB is separated from the entangled modl¢18]. Sec- )

ond, Alice sends the measured result regarding which of the |‘Pi>:f d*aP(a)|a), @
eigenstates is measured to Bob via a classical information

channel and then Bob performs an appropriate local unitarywhere P(a)={«a|¢;)/7. Using the approach proposed in
transformation on the modB according to the measured Ref.[18] and completing the above teleportation steps, we
result. After these two steps, Bob can obtain an approximatean finally place the modB in the unnormalized state

|b(Xa,Pp))= \Ecosh‘lr exp[—2(1—tanhr)|z|2]f d2aP(a)exd — 1| a|2+ V2(1—tanhr)z* o]

X exp{[ @ tanhr + \/2(1—tanhr)z]tanhb}|0), 3)

wherez=x,—ip, and (x,,p,) are outputs of the homodyne measurement detectors. If outputs of the detectors are locked at

a fixed value X, ,pp), the state vecto(3) is the conditional teleported state in the mdgldf a series of entirely equivalent

states are in sequence given to Alice in the teleportation process and the detectors are able to respond to all of the eigenvalues
of the two commutative quadrature-phase operators, the rBodli#l be in a mixed state which is described by the density

matrix

b= | axdpel 96,00 (@00, P @

The quality of the teleportation process can be measured by the so-called fidelity, which is defined as
(@il d(Xa, Po) )P/{ p(Xa,Pp) | H(Xa,Pp)) [7]. Since &,,p,) are continuous variables and detected in the probability density
(d(Xa,Pp)| #(Xa,Pp)), an averaged fidelity is appropriate for measuring the teleportation quality and is given by

Fa=(eilple)
1
=§<1+cothr>f d®ad?®Bd*ed® nP(a)P(£)P(B)* P(n)* exrl — 3 (|a|*+ &>+ n*+]BI%)]

xexp{z[(a+&)(n* +B*)+cothr(a— &) (7* — B*)1}. ©)

In 'Fhe following part, we wiII_ use the above expli_cit ex- ((Aﬁ)z)t=<(Aﬁ)2>i+(2(ﬁ>i+1)e‘2’+e‘4’, (7)
pressions for the density matrix of the teleported field and
the fidelity to investigate the preservation of nonclassical
properties of an input state in the teleportation process. Bywhere ((An)?)=(n?—(n)2. We see that the variance in-
use of Eq.(4), the mean photon number in the teleportedcreases and the change depends on an input state. The photon
field is given by antibunching effect appears when the normalized equal-time

. . second-order correlation function is less thaj2@], that is,
(n)y=(n)i+e"?, (6)

. _ _ g@(0)=(b*20?)/(b"b)? <1. (8)
wheren=b'b and ()i« refers to averaging over an input
state|¢;) and the teleported fiel(4), respectively. It is no-
ticed that the input field is amplified in the teleportation pro-From Eg.(4), we have the correlation function of the tele-
cess but the gain of the mean photon number is independeRgrted field,
of a quantum state to be teleported. In fact, the gain is just
the amount of noise in the squeezed quadrature-phase com- ~y o _ar
ponent of an optical field in the statg). The variance of the 952)(0): (n >‘_(1_A4e ) n)i+2e _
mean photon number in the teleported field is given by ((n);+e "2

€)
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When the teleported field exhibits the photon antibunching?.0 -ttt b oo
effect, the conditiong{®)(0)<1 holds. This results in the ¢.g]
following condition of the squeezing parameter: 0.8 F.
r>—Hn{ (M2 [((AR)2) = () ]—(A)}. (10 O7
0.6
In order to investigate squeezing effects in the teleported_ _
field, we introduce two quadrature-phase operators for the ™ |
modeB, 0.41 <X
X1=3 (b+b"), (1) 03]
. 0.2
X,=(1/2i) (b—bT). 12 ]
When the condition o.o.............. ——————————

e —
00 05 10 15 20 25 30 35 40
(13 Squeezing parameter r

. o o ) ) FIG. 1. Fidelity of teleportation ofa)+|— a) with «=0.8 and
is satisfied, the field is said to be in &th-order Squee_ZEd_ second-order squeezing in the teleported field vs the squeezing pa-
state[21]. For the second-order moment of the fluctuation inggmeterr. The upper boundary is 0.25 and the lower one is the

quadrature-phase components of the teleported field, frorsqueezing amount of the input state.
Eq. (4), we have

((AX Ny<(N—1)1/2N

~ ~ V. —1lrn2 +12
<(Axl,2)2>t:<(AXl,2)2>i+ieizr' (14) Y1 Z[b +(b ) ]1 (18)
We see that half the amount of noise in the squeezed quadra- Y,=(1/2i)[b?~(b")?]. (19
ture component of an optical field in the state is added to

the variances of two quadrature-phase components of thWhen<(A?12)2>_(<ﬁ>+%)<o, the field is said to be in a
teleported field 9,15]. The change of the variances of two squared amplitude squeezing state. This is also a nonclassical

quadrature-phase components of an input field in the telepogya t[22]. The variance off; , in the teleported stat@) is
tation process is irrelevant to the input state. According tQ,iyen by ’

Eg. (13), we can find out that when the squeezing paramete . . A
r satisfies the condition ((AY122)=((AY1)Di+2(n)ie > +e ¥ . (20

r>—3In{2[ ;= ((AX; 2?1}, (15  We see that the change of the variances in the teleportation
process depends on an input state. When the squared ampli-

the second-order squeezing effect which is originally im-y,qe squeezing survives in the teleported field, we have the
posed on an input state can be preserved in the teleportegqition

State.
The fourth-order moment of the fluctuation in quadrature-

7 \2\ o1 a2 -4
phase components of the teleported field is given by ((AY¥1)%i—((mi+2)+2(n)ie” +e<0. (2]

(AR M=((AX )N +3((AKy )2e 2 +Fe . (16 i T T e
0.9+ -
According to Eq.(13), the fourth-order squeezing means ¢z F. [
((AX19%) < 5. We see that unlike the second-order squeez-, ] [
ing, the change of the fourth-order squeezing, in the telepor-os_ [

tation process depends on a state to be teleported. From Ec”

(16), we conclude that when the squeezing parametat- 0.5 [
isfies the condition 0.4 . -
0.3 <(AX,) >, i
r> = 3n{\((A%; )22 3% — (A1) 2] -
—(A% 9%}, an '
’ 0.0' - '0:5' - '1:0' - '1:5' - '2:0' - '2:5' - '350' - '355' - '4.0

the fourth-order squeezing effect can exist in the teleportec
field.

Squeezing parameter r

Another kind of higher-order squeezings is the so-called FIG. 2. Fidelity of teleportation ofa)+|— a) with «=0.8 and
squared amplitude squeezirj@2]. Two quadrature-phase fourth-order squeezing in the teleported field vs the squeezing pa-
components of the squared complex amplitude of the nBde rameterr. The upper boundary isx and the lower one is the

are defined as
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FIG. 3. Fidelity of teleportation ofa)—|— a) with «=0.8 and

second-order equal-time correlation function in the teleported fiel
vs the squeezing parameterThe upper boundary is 1.0 and the
lower one is the value of the correlation function in the input state.
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the equal-time second-order correlation function and the fi-
delity are shown against the squeezing parametaihen
sending the statlr) —|— a). These figures show that when
r>0.6, 0.65, 0.75, the photon antibunching effect, the
second-order, and fourth-order squeezings, which are origi-
nally imposed on the input states, can remain in the tele-
ported states. In the experimdi®], r is about 0.69 and ap-
proaches the marginal region. In these figures, we also see
that whenr>1.5, the nonclassical properties of the input
states can be well preserved in the teleported one but at the
same time the fidelity is around 0.85. In order to make the
fidelity close to unity, the squeezing parametemust be
larger than 3.0. This means that the nonclassical properties of
an input state may be satifactorily transferred from a sending
station to a receiving station via the teleportation process
even though a quantum state is not truly and exactly tele-
orted.

In summary, nonclassical properties such as the second-
and fourth-order quadrature-phase and squared amplitude
squeezings, and the photon antibunching effect in the tele-

This inequality results in the requirement for the squeezind’orted field, are investigated. We show that these nonclassi-

parameter,

r>—3In{ N2~ [((AY122)— ()i + DT ()}, (22

cal properties which are originally imposed on an unknown
quantum state to be teleported can be preserved in the tele-
ported state if the squeezing parameter of the two-mode
squeezed vacuum state which is used as an EPR source is

To have a concrete idea on the transfer of nonclassicdarger than a certain value. The explicit conditions of the
properties of a quantum state in the teleportation processgueezing parameter for preserving these nonclassical prop-
now let us consider two interesting states. As is well knownerties in the teleported field are obtained. We also note that

two linear superpositions of coherent state$+|— «) and

these nonclassical properties may be well transferred via the

|a)—|—a) can display the second-order and fourth-orderteleportation process even if the fidelity of the teleportation

squeezings and the photon antibunching effect, respectivelprocess is not very close to unity.

In Figs. 1 and 2, the second-order and fourth-order fluctua- This research was supported by the National Natural Sci-
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parameter when teleporting the stater) +|— «). In Fig. 3,
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